

Wolbachia-based mosquito management for Aedes spp.

Milutin Djurickovic – Intro to Wolbachia / Product Characterization
Jeannine Kausch – Regulatory Aspects
John Kough – Human Health Considerations
Shannon Borges – Environmental Risk Assessment
Chris A. Wozniak – Oxitec GE Mosquito
Biopesticides and Pollution Prevention Division
Office of Pesticide Programs

Mosquito Basics

- > Females bite / Males do not
- > 3500 mosquito species
- ➤ Only 9 species bite
- > Females much larger than males
- ➤ 220 million years not much variation

Mosquitoes

- Ae. aegypti Yellow fever mosquito
- Ae. albopictus Asian Tiger Mosquito day time biter
- Albopictus displacing Aegypti
- Can transfer disease to progeny but less common

Aegypti vs. Albopictus

Aegypti - Yellow fever mosquito

- ❖ Zika transmitter
- ❖ Yellow fever Vaccine 1930's
- Chikingunya
- Strongest Dengue Transmitter
- Thrives in Urban Areas mostly bites people
- Brought to new world during colonization

Albopictus - Asian tiger mosquito

- > 1985 Texas
- > Dengue Break bone fever
- > Eastern Equine Encephalitis
- Bites man, wild animals, and domestic animals
- > Cache Valley virus
- > St. Louis and LaCrosse Encephalitis

- Wolbachia intracellular microbe
- Naturally Present in Culex and Albopictus mosquitoes species and fruit fly
- Endosymbiont lives inside exclusively
- Present in ~60% of all insect species
- Maternally inherited and Horizontally
- Not naturally present in Aegypti

http://www.cdc.gov/cdcgrandrounds/pdf/archives/2015/may2015.pdf

Wolbachia pipientis

 Extracted from Culex mosquito and microinjected into Albopictus and Aegypti

- Microinjection and from Albopictus to Aegeypti
- · Rear in lab

Wolbachia Biocontrol

- ☐ Release males harboring Wolbachia into a population
- ☐ Mate with wild females with no Wolbachia, eggs don't hatch
- ☐ Females with Wolbachia mate with males who don't they hatch
- ☐ Same Wolbachia strain hatch different don't hatch
- ☐ Problem sorting males and females for release
- ☐ Horizontal transfer between species How? Is it recent?
- ☐ Risk Parthenogenesis? (Females produces females without mating)
- ☐ Kill Males? Feminization?

Eliminate Dengue

- Wolbachia establishment supported by Gates Foundation
- · Release Males and Females with Wolbachia
- VRUS STRUCTURE & COMPONENTS

 Designe

 Care to before from Englishment of Englis
- Presence of Wolbachia in Aegypti lowers virus multiplication
- · Result Less Dengue transmitted
- · Success Australia, SE Asia
- Brazil problems coordination

Eliminate Dengue

- ☐ FDA will most likely regulate
- ☐ Animal Drug lessens transmission

- ☐ But may be minimally Pesticidal and Animal Drug
- ☐ May shorten longevity and fertility

Experimental Use Permits In General (FIFRA § 5 & 40 CFR Part 172)

- Allow experimental testing of new pesticides and new uses of registered pesticides to accumulate information to support an application under FIFRA section 3
- Required if pesticide field tests are conducted on 10 acres or more of land or 1 acre or more of water
- Certain things must be provided to EPA to support an application for an experimental use permit:
 - ✓ For microbial pesticides, data/information described 40 CFR § 158.2171 through § 158.2174 (e.g., toxicological data/information)
 - ✓ Description of experimental program, including items like amount of pesticide to be used; pest organism involved; and testing locations, dates, and purpose/objectives
 - ✓ Labeling

Wolbachia Experimental Use Permits

89668-EUP-1

- Issued to MosquitoMate, Inc. on July 26, 2013; amended and extended on June 26, 2014
- Wolbachia pipientis, ZAP Strain in male Aedes albopictus
- 2013 2015 in Los Angeles Co., CA; Manatee Co., Florida; and Fayette Co., Kentucky
- 2013 2016 in Suffolk Co., New York
- 16,983 acres involved
 - * Release site and monitoring acreage
- 127,200,000 Wolbachia-infected mosquitoes approved for release
- · Generation of product performance data

 Mosquito adults and eggs to be monitored in treatment and control areas to evaluate whether there is increased frequency of eggs failing to hatch and/or significant reduction in population size in treatment areas

Wolbachia Experimental Use Permits

88877-EUP-2

- Issued to the University of Kentucky on October 15, 2015
- Wolbachia pipientis, wAlbB Strain in male Aedes aegypti
- 2015 2016 in Fresno County, California over 840 acres
 - · Release site and monitoring acreage
- 2,400,000 Wolbachia-infected mosquitoes approved for release over 6-month timeframe (100,000 per week)
- Generation of product performance data
 - * Mosquito adults and eggs to be monitored in treatment and control sites to evaluate whether there is increased frequency of eggs failing to hatch and/or a significant reduction in population size in treatment areas

HUMAN HEALTH CONSIDERATIONS

Wolbachia pipientis first described from Culex pipientis in 1936 Related to other intracelluar parasites like Rickettsia, Erlichia Found in numerous forms of life: many arthropods, nematodes No separate species; now treated as genetic clades Six clades: A,B,E, F Arthropods; C and D in Nematodes

Major Effects on Hosts

Can range from mutualism to parasitism
Often found associated with chromosomes
Male killing
Feminization
Parthenogenesis
Cytoplasmic incompatibility
Obligate symbiont in nematodes; associated with adverse reaction in River Blindness, Filarial Diseases

Wolbachia Mosquitoes

Infection with *Wolbachia* to yield unusual phenotypes Can be employed similar to Male Sterile Technology Do NOT release females: establish new population But...

Risk of bite from *Wolbachia* female?
Pre-exisiting populations of *Wolbachia* mosquitoes
No indication that *Wolbachia* found in salivary glands
No immune reaction to *Wolbachia* from mosquito bites

Role of Wolbachia in Human disease?

Nematode diseases shown to be controlled by doxycycline
Obligate symbiont *Wolbachia* in these nematodes
Some implication that release of *Wolbachia* with worm death
may induce inflammatory response triggering pathological effects
So...

Different genetic clade in mosquito versus nematode Exposure differences: Bite versus systemic worm No reproduction of *Wolbachia* in mammals No anti-*Wolbachia* antibody produced

Wolbachia pipientis Ecological Risk Assessment

Microbial Pesticides Branch

Nontarget Data Requirements – Tier I

Data Requirement	Guideline	Study Performed	When Required
Avian Oral Toxicity	885.4050	5-day oral exp., 30-day observation	All outdoor applications
Avian Inhalation Tox./Path.	885.4100	5-day intranasal/intratracheal exp., 30-day observation	When nature of pesticide indicates toxicity or pathogenicity to birds
Wild Mammai Tox./Path.	885.4150	5-day oral/intranasal exp., 30-day observation	Case-by-case; if toxicity testing (158.2140) is not adequate/appropriate
Freshwater Fish Tox./Path.	885.4200	Oral/water column exp., 30 day observation	Aquatic or non-residential terrestrial outdoor uses; generally, if significant exposure is expected
Freshwater Invertebrate Tox./Path	885.4240	Water column exp./30-day observation	Aquatic or non-residential terrestrial outdoor uses: generally, if significant exposure is expected
Estuarine/Marine Fish & Invertebrate Testing	885.4280	Oral/water column exp. (fish), oral exp. (invertebrates), 30 day observation	Only required when significant exposure is expected
Nontarget Plant Testing	885.430C	Exp. route determined by use, observation through harvest or at regular intervals (perennials)	If microbial pesticide is taxonomically related to known plant pathogen
Nontarget insect Testing	885.434C	Usually oral exp., 30 days or 20% control mortality: 3 species tested	Required when microbial posticide controls insects by infectivity; may be required when insect concerns exist
Honey Bee Testing	885.438C	Adult or larvae, oral exposure, 30-day obs.	All outdoor applications, may be required for greenhouse uses

Considerations for Nontarget Risk

- · Can't be cultured on its own
 - · Typical nontarget testing not really possible
- Wolbachia is widespread in insects
 - · Nontarget organisms are currently exposed
- Exposure to this *Wolbachia* is limited to released adult males
 - Limited nontarget exposure

Primary Focus for Nontarget Risk

- Risk concerns focused on Wolbachia's characteristic effects
- Horizontal transmission to other insects
 - Occurrence on evolutionary time scale
 - Possible cause of new infections
 - Difficult to achieve in the lab
- Impact of mosquito reduction on nontarget food sources
 - Wolbachia targets one species
 - Target mosquito species are invasive

SUMMARY

- Wolbachia affords some potential for mosquito population suppression through cytoplasmic incompatibility
- Overall risks to human health and the environment are considered low
- Specificity of *Wolbachia*-based management is key to reduced risk paradigm (reduced insecticide use follows)
- We will need to consider this technology as part of an overall integrated approach to managing disease vectors

Oversight of Genetically Engineered Male-Sterile Mosquitoes

- FDA-Center for Veterinary Medicine Investigational New Animal Drug (INAD) – Oxitec OX513A
- · Definition of INAD is quite broad
- National Environmental Policy Act (NEPA)
- Environmental Assessment and Finding of No Significant Impact are out for public comment

Planned Florida Release

- Oxitec working with the Florida Keys Mosquito Control District, Key Haven, Monroe County, Florida
- Ovitraps and adult sentinel traps
- Suppression of population of *Aedes aegypti* is the target not disease transmission

Oxitec OX513A Aedes aegypti

Genetic Storing

- tTAV Tetracycline responsive element
 - * insect-optimized tetracycline repressible transactivator protein
- tetOx7 non-coding binding site for tTAV
- dsRed2 *Discosoma* Red Fluorescent protein marker
- In absence of tetracycline, leads to transcriptional squelching – gene expression disrupted

Oxitec Male Sterile-based mosquito management for Aedes spp.

- Male mosquitoes released 2-3X / wk
- Mate with wild-type females, but offspring do not develop beyond larval stages
- Sites to be monitored and dsRed2 marker used to discern which mosquitoes arise from OX513A release
- > 50% suppression of local population is goal

Source TO Reservation of Trial Acres on Fine Haven

Websites for info on Oxitec OX513A

Proposed site for investigational release of ONO ISA manipulates. Amos identified are Treated (14), Softer, and Universed Control Areas (UCA), respectively.

- http://www.oxitec.com/health/florida-keys-project/
- http://www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/GeneticEngineering/GeneticallyEngineeredAnimals/ucm446529.htm